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Abstract- Many complex industrial processes are multivagablith multiple inputs and multiple outputs.
Generally multivariable systems are characterizgd complicated cross couplings where control loops
sometimes interact and even fight against eachr.offtés poses significant challenges in designingtml
systems for these processes. Thus interaction €igaly important for multivariable systems to eliatie
undesirable interactions among the control lodpgeractions among control loops in a multivariabiestem
have been the subject of much research over theyeass. The purpose of this article is to revieese
methods. Various arrays, indices and methods fecseg best input-output pairings are discussetthig paper.

Index Terms- Multivariable system;, interaction analysis paginand relative gain.

1. INTRODUCTION arrays, indices and methods are briefly discuseed t

A multivariable system has multiple inputs andunderstand the importance of input-output pairings.

multiple outputs. In case of these systems the imsk
to control the multiple output variables by usingiégi"\](gou-rpu-r PAIRING BASED ON
multiple input variables. In designing controllds

multivariable systems, a typical starting pointti® 2 1 Relative Gain Array

use of multiple, independent single-loop contraller The relative gain array [RGA] introduced by Bristol
with each controller using one input variable tojn 1966 [1] is widely used in control system design
control a preassigned output variable. But becafise and analysis. Among the advantages of RGA are the
the interactions among the process variablespliowing. It requires minimal process information
multivariable systems cannot, in general, be teeateand due to its ratio nature even approximate peces
like multiple, independent, single loop systemsuSh models can give useful results. It is independdnt o
a multiple  single-loop control ~ strategy for control system tuning and process disturbances.
multivariable system must take interactions intoHence this method is cost effective and popularARG
considerations. The design task would be started by 5 matrix of numbers. Thigt" element of the array
considerin.g the possibility of pairing the inputdan s the ratio of steady state gain between tHe
output variables. For a typicalx n plant there ar@! ;o nojled variable angf manipulated variable when
possible input-output pairings. Therefore selectibn 5 other manipulated variables are constant, eiid

a good input-output pair is very important taskhe by the steady state gain between the same two

design procedure of design of decentralized contra;japles when all other controlled variables are
system. A correct input-output pair would result in g, ciant.

minimum interactions among control loops x
Several authors have proposed different methods to [m_,-]mk

measure the interactions of multivariable processes Aij = 3 @)
Bristol introduced the relative gain array (RGA) &b [mf]xk

a criterion for choosing the best variable pairiaggd  For a simple multivariable system with equal number
this measure continues to be one most often usedf controlled and manipulated variables whose
Niederlinski proposed Niederlinski index [2] which transfer function matrix i (s), the matrix of steady
considered the sign of the determinant of the pdant State process gains is given as-

the screening tool. The use of RGA was discussed in A=G(0) (2)
details and the theoretical justification for Boi&  For this system the RGA is defined as
rule of avoiding pairings corresponding to negative A=4AQ AN (3)

relative gains was provided [3]. There are manyhsuc\where( indicates element by element product.
methods proposed in literature to eliminateRGA has some drawbacks and in some cases it leads

undesirable pairing. The purpose of this papemis ttg incorrect conclusions about how the control Bop
discuss some of these methods. Therefore some of tehould be paired and how much loop interactions

exists. RGA does not consider disturbances and
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therefore it does not give any insight into theases. 1%
The most important drawback of this array is that i J :—j(yTQymT RU)dt
does not consider dynamics and as a result it ezoh | 2 0

to incorrect pairings.

In literature many researchers tried to extencdosc
RGA definition, with several modifications. A

frequency dependent matrix was introduced as [4]
Since the controller K is calculated based on the

- T|1_ -T
A(s) = P(S)D(P(S) ) =P(9UP() " 4y  dynamic model of the process hence it contains the
The frequency dependent RGA is very sensitive tanformation of the process dynamics. K has been
modeling errors as an ideal model of the process i@ssumed to be square matrix. Based on this caetroll

usually unknown. Also a classical frequency-baseqne jj™ element of the DRGA is given as-
analysis will require to consider and analyze

9)
Here Q and R are taken as identity matrices. An
output feedback matrix gives the admissible costrol

u=-Ky (10)

n(n+1) Bode plots, which is very time consuming oy

[5]. Another approach combines the frequency 9y ko ki

dependent approach with the singular value ij =6— (11)
decomposition of the transfer function matrix Ui

representing the process [6]. 0y, k=0 ki

2.3. Dynamic Relative Gain Array . _ . _
RGA does not consider dynamics and as a resuhit ¢ Both terms in Eq. [11] give gain df; to y; during a

lead to incorrect pairings. Hence a new approach gfansient in which the process is controlled usiney
defining dynamic relative rain array [DRGA] that ontimal output proportional gain matrix, K. The
overcomes this limitation was introduced. The first, merator gives the change in the manipulated

approach in this area used a transfer function irinde
place of steady state model used for RGA calcuiatio
[7]. In this case the denominator of the DRGAthe case where the optimal controller is bringihg t
involved achieving perfect control at all frequess;i  system back to the origin starting from a random
while the numerator was simply the open loop transf initial state on the unit sphere. The denominasor i
function. Many of the studies in this field require calculated using the same optimal controller gain
detailed feedback controller design [8]. A bettermatrix, K, used in the numerator
approach to defining a useful DRGA should involve a

relatively little user interaction in the contralldesign  2.2. Relative Omega Array [ROmMA]

aspect of the analysis. One such approach wah tool for selecting right pairing between inputsda
presented [9] which assumes the availability of theoutputs based on characteristic frequencies inedlos
dynamic process model which used to design #&op and open under perfect control was introduced
proportional output optimal controller. The DRGA in which was structurally similar to the classical RGA
this case is defined based on the resulting cdetrol [5]. In classical RGA the variable under test isasty
gain matrix. In this study the following linear &ta state gain where as in this method it the critical
space dynamic model for the plant was assumed to beequency.

variable U; to change in the measuremeryt, , for

available . W, is defined as a transfer function in case of merfe
X —~. . . g
E:Ax+ Bu control and &) is the corresponding critical
(5)
y=Cx (6)  frequency. Then the ratiecﬁq—J is used to create the
The above equations are scaled an written in tefms A
scaled varial®@s following new matrix which is a new dominance
dx _ index.-
d— = AX+ BSU w;
t (7) F= {_,}
V=CcX i
g and y are the scaled variables al’ﬂs and C Dominance is guaranteed if a ratitgj— tends to one.
are calculated fromB and C by suing scale factors.  The matrix RoMA is then given as-
The proportional optimal controller is obtained by - -T
1€ pre timal con : $=FOF 13
minimizing the following objective function (13)

ROMA retains all the properties of classical RGA
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2.4.Normalized RGA [NRGA] Y = max Yo,s i) a7
NRGA was introduced through the combination ofwhereps is a complete pairing which satisfies NRGA
RGA matrix and its selection rules [10]. Using NRGA Rules (1) and (2)

pairing is interpreted as an assignment problenchvhi

is solved by Hungarian algorithm. Hence in thisecas 2 4. Relative Normalized Gain Array [RNGA]

pair is performed automatically without human A new loop pairing criteria based on the RNGA was
intervention which is the case with classical RGA.proposed for control structure configuration [1The

With this method it is possible to pair adaptivée  normalized gain [NG] for a particular transfer
inputs and outputs in a nonlinear and/or time \@&ia fynction was defined as-
_9ijG40)

process, where the optimal pairing may change from P (18)
time to time. Nij ™ agrj
In RGA selection of one of the two pairs with relat  Where g;;(j0) is the steady state gain ang,; is a
gain values in either side of 1 is ambiguous. Thisaccumulation of the difference between the expected
ambiguity arises because in both cases one try tand real output of the normalized transfer function
select closer values of 1 but definition of clogser 91 ().
subspace[1,0] is different from its definition in  Eq 18 was extended to all the elements of thestean
subspacil, +]. This problem was dealt with by fynction matrixG(s) and the normalized gain matrix
interpreting “close to 1” by the function was obtained as-

(0 As0 Ky = G(j0) O Tr (19)

Where & indicates element by element division.
fH=4AA 0<1<1 (14)
|

Ty = [Tarij]nxn

kf ) 1< 12 The relative normalized gain [RNG] between output
“ variabley; and input variable;; was defined as-
! o _ Knij
P = T (20)

Here I?NL-]- is the effective gain between the output
variabley; and input variableu; when all other loops
are closed. The relative normalized gain array
[RNGA] was calculated as-
@ =[¢y] . =Ky ®Ky" (21)
Some of the important properties of RNGA are-
1. The value ofg;; is the measure of effective
interaction expected in thé&" loop it its
Fig.1 Normalization function for NRGA [10] outputy; is paired withu;.
The elements of RNGA across any row, or
down any column, sum up to 1.

Ilon th'? methtogl tfhe notr;lllniar r?applr;]g “CIO.SG |t:(-) a;]'lt':h With this RGA-NI-RNGA based control configuration
e interpreted from the function shown in Fig.1The .\ o developed as-

above function was applied to the elements of RG'ﬁ\/IanipuIated and controlled variables in  a

matrix to obtain a new matrix which is called as : : .
NRGA with elements decentralized control system in the following way

08

07

05

05k

Noma zed RGA (NRGA)

04

03

0z

01

0

that-
. bij = f(4i)) ) (15_) 1. All paired RGA elements are positive
The RGA pairing rules were interpreted by using 2. Nlis positive.
NRGA in the following manner 3. The paired RNGA elements are close to 1.
Rule 1: Try to select pairs with largg; 4. Large RNGA elements should be avoided.

Rule 2: If the plant should be decentralized iraég
controllable (DIC) avoid selecting pairs with zero3, |NPUT-OUTPUT PAIRING IN

valuese;; DECENTRALIZED CONTROL
Rule 3: For DIC the selected pairs should satisfya criterion for selecting input output pairs sudtatt
Niederlinski condition the resulting control structure is decentralizeegnal
controllable [DIC] was proposed [12]. Several
_ det (G(0) (16) necessary conditions for DIC were presented inderm
Mps 9:;(0) of steady state gain matrix. All the conditions
Whereps is the set of selected pairs presented were in terms of avoiding pairings where
Using NRGA, the overall pairing measure was the plant gains may change signs as other loops are
defined as-
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changed. Following rules were presented for pairing _ 911(9

selection 1T an(s) = 911 ()G ()

Rule 1: eliminate pairings with negative RGA'’s (28)
Rule 2: Eliminate pairings with negative Niederkns The relative interaction is given as-
Index. a,,(9) 1
- o . : . O, (=22 =~ -
Rule 3: Eliminate pairing with negative Morari 1
S . A 911(8)  Au(s) 29
indices of Integral Controllability which is givexs- o ) - (29
MIC = Re{A(G’f(O))} (22) In general the relative interaction for the pairafg
Rule 4: Eliminate pairing wittRe{A(E(0))} < 1;E =  outputy; with input U; is given as-
(G ~ Gaiag)Gara @ a9 1
Rule 5: Eliminate pairings for which there exist& a ij (s)= 9:(s) . (9)
(diagonal matrix with positive enteries) ! ! (30)
which yieldsRe{A(G*(0)K)} < 0 Where-
gij (s) a1
Analysis methods to determine achievable closeg-loo 4j = ————— = = 9 (9[G " (I)];
Y o ! 9i; () + & (9) ! !

system characteristics as a function of controtesys
structure independent of controller design havenbeeAn interaction measure called as participation atr
developed [13]. With these methods pairings whichvas proposed which was based on the dynamic model
do not admit acceptable closed loop performance ca®f the process [15]. This index was built on thsteyn

be discarded before any controllers are designedlramians and also provides a measure of achievable
These methods only require the steady stat@erformance of a given controller architecture with
know'edge of the p|ant_ The Concept of integra”espect to either the full MIMO case or another
stabilizability and integral controllability was cor!troller architecture. The participation matrig i
developed to study single loop controllers fordefined as-

multivariable plants. _ trace[P;Q;]
Automatic decentralized control structure selection i~ tracépol
has also been studied [14]. The control structure (31)

selection problem is formulated as a special MILPWhere-
employing cost coefficients. A disturbance free

» _ P and Q are controllability and observability
system was partitioned according to

{)ﬁ} _ [911 O12 }{ Ul} gramians.

Yz 921 Gz | U> 23 A dynamic loop pairing criterion for decentralized

: L . . (23) " control of multivariable processes was proposed by
In this approach pairingy; and U, is considered and utilizing both steady state gain and band width
all other outputsY, are assumed to be controlled by information of the process open loop transfer fiomct

. elements [16]. The loop pairing procedure of RGA is
all other inputsU . When all other loops are open, extended in this method by defining an effectivenga

i.e.U, =0, the effect ofu; on y, is given by matrix which can reflect dynamic loop interactions

Y, = Oyl (24) under finite bandwidth control. The effective gain
When all other loops are closed and perfectlymatrlx was obtained as-E =G(0)0Q
controlled (32)
Yy = o1ty + G U, (25) Here-

G(0) is the steady state gain matrix and is the
bandwidth matrix. The elements of matrix I,

— -1

Uz =-G33921h (26)  represents interaction energy to other loops whep |

In case of perfect control of all other loops thifeet y, —U. is closed. Bigger the value of,, more
| J ' )’

of u; on vy, is given by
y1 = (01 + a3, )uy 27)
The term a;; = —0,,G,,0,,iS the indirect effect due

to perfect control of all other loops.
The gain fromu; to y; of the open-loop situation o, =—

relative to the perfect control situation thus is- & (33)

The value of the actuatds, becomes

dominant the loop will be. The effective relativainy
between output variably; and the input variablel,

is then defined as-
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Where€; is the effective gain between output Process transfer function matrix. It is a “necegdart
: not sufficient condition” for stability of a closed

variable y; and the input variableuj when all other  system with integral action. If the index is negafi
loops are closed. When the all effective relatinng ~ the System will be unstable for any controller isgt
are calculated for all the input/output combinasiari ~ Which is called as integral instability. It the édis

a multivariable process, it results in an arraytraf ~ POSitive, the system may be or may not be stable.
form similar to that of RGA which is called as Niederlinskiindex is defined as-

effective RGA [ERGA] which can be calculated as- NI = Det[KP]
- -T N
O=EOE (34) |‘| Ko
L . Pij
In presence of plant uncertainties the input-output B
pairs in decentralized control structure can change (37)

Input-output pairing in presence of plant uncettai Whe.re- _ _
has been discussed [17]. Hankel interaction index<p is the matrix of steady state gains from the
array is proposed to choose appropriate input-autpyprocess open loop transfer function.

pairing in presence of plant uncertainties. Hankelk; are diagonal elements is steady state gain matrix.
interaction index array is calculated as-

[iH ]ij = lﬁ&vci:jwéj )J (35) 4.2 Hankel Interaction I ndex

; ; An interaction measure called as Hankel interaction
Where W' and W3 represents controllability and index was proposed for stable multivariable systems
[19]. This index is based on Hankel norm of the®IS
i . elementary subsystems built from the original MIMO
output, respectively. If there is no overlap betwee gysiem. For each elementary subsystem Hankel norm

variation bounds of the same row and the samg seq to quantify the ability of input; to control
column in Hankel Index interactions array, the

nominal input-output pairing remains valid for all Output y;. These norms are collected into matrix

observability Gramians for thé™ input and j"

parameter variations o whoseij™ elements is given as-
Most of the methods used for selecting input-output —
pairs require evaluation of every alternative idesr ‘ZH‘” :|Gij (Z)|H (38)

to find the optimal pairings. As the number of
alternatives grows rapidly with problem size, pairi
selection through exhaustive search becomes |G-- (z)|
T = i
cumbersome. To overcome this difficulty a novel ‘ZH‘.. = H
! Z|Gij (Z)|H
ij

The normalized Hankel index array is given as-

(39)
branch and bound [BAB] approaches for pairing

selection using relative gain array apd-interaction

measure as a selection criteria was presented Th8]. 4.3 Passivity Index N o
pairing selection is formulated as the following An experimental pairing method for multivariable

optimization problem system was proposed which is based on passivity of
min J(pn) the _paire_d system [20]. A frequency dep.endent
R.OP(N,) (36) passivity index was introduced to characterize the
st Li(P)z0 i=12..) total destabilizing effect of both loop interactsoand
Where- process dynamics.

P is the pairing selection criterion anﬂ4Zet Rati
L(i=12..n) represents a set of inequality” <@ a0

constraints The ratio the product of the diagonal elementshtd t

of the diagonal elements of the steady state gain
matrix is called as zeta ratio. Two input two outpu

4. INPUT-OUTPUT PAIRING BASED ON systems are characterized by this zeta ratio. The

INDICES concept of zeta ratio was extended to higher order
] o systems [21]. The steps involved in this appraaeh
4.1 Niederlinski [ndex 1. Generate all possible single loop control
Niederlinski is a fairly useful stability analysisethod configurations _ S
[2]. It can also be used to eliminate unworkable 2. Evaluate the Niederlinskiindex of each
pairings of variables in the early stage of desijnis control configuration
method is used when integral action is used irhel 3. For the configurations wittNI >0,
loops and it uses only the steady state gains ef th determine the ratio of the product of the
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diagonal elements to that of the diagonal

i experimental outputyf (k) is the model output from
elements of the steady state gain matéx][ ]

4. Sort the viable control configurations in FBFN andF " is the resultant FBFN model.
order of increasing value of . The one with ~ The steady state input-output gains are given as-
the least value is referred to as the zeta ratio o Of;
and gives the suitable configuration. Z au, (k—t,)

5. Evaluate the RGA matrix for this 9= 4=t
configuration. L i of

oy (k -t )
5. INPUT OUTPUT PAIRING USING FUZZY (1% Y
LOGIC my of
In many industrial real problems, accurate system J
models are not easy to derive, such as complex ;aup(k‘tp)
manufacturing processes and chemical processes. Gjp = o
Large number of variables in these processes tdten ' of
to gnonlinear interactions which gre not easy to 1_2 %) (k -t )
y ty=1 Yi y

quantify with crisp numeric precision. The
multivariable interaction analysis is difficult to
execute of these systems without mathematical (40)

models. In recent years, fuzzy control technologiesrhe system steady state gain array is obtained as-
have attracted intense interest. During the past tw

decades different types of fuzzy controller design 011 912 - Yyp

have emerged for the manipulation of multivariable G(0)=[g»r]= : :

systems with nonlinear characteristics, complex !

structure and uncertainties. Compared with traiitio 9o Yoz " Yo a1
control techniqgues based on exact mathematical (41)
models, fuzzy-model-based controls are powerful and’he RGA is then calculated as-

robust tools for control of ill-defined and complex .

systems. A =G(0) [G(O)_l] (42)

The interaction analysis for multivariable systems

based on system fuzzy model has been proposed [2Z. more accurate loop pairing method which utilizes
The nonlinear multivariable system is modeled a$oth steady state and dynamic information of the
fuzzy basis functions networks [FBFN]. Then a syead system was proposed for MIMO system which were
state gain array is calculated based on the FBFNKepresented by Takagi-Sugeno (T-S) fuzzy models
around the specific operating point. The FBFN mode([23]. Each individual loop in the MIMO process is

developed is shown in Fig.2

¥ (k)

i (k—1) ——

u(k—m;) ——

u],,(k—i} E—

efp(k—.-np'l Sy

yilk=1) ———

v; (k)

represented by a T-S fuzzy model based on the data
and the models are then assembled to form the MIMO

model. For an open loop stable and nonsingular at

steady state MIMO system of n inputs and n outputs

the following T-S fuzzy model was obtained

frsin frsiz o fram
f f e f

Fro = [fTS]_ ]nxn = | 'Ts2t T:SZZ § T:SZn (43)
fran  frenz = from

From the definition of classical RGA, the relatiyain
for the above MIMO process was defined as-

vilh=1j) oy;
du; _
Fig. 2 Non-linear Dynamic System Modeling by i = ZAu=0 (44)
FBFN [27] ay,
ul(k—l)....ul(k—ml) ..... up(k—l)....up(k—mp).yj (k—l) ..... yj(k—nj) du; a0
rzj =

are the experimental input variabley, (k) is the
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Where Ag; is the relative gain for the loog; —u;.  Where-
P Yi (oo) is the steady state output
Yi ; ;
(ﬁj is the open loop steady state gain fory (rT) is the output at the time of™ sample of
V. =0

T#j

frsj
To combine the steady state gain and the normalized
integrated error for the interaction measure arap lo

frg; and (aij is the apparent process gain
BYr2j=0 pairing, the normalized gain fof;g; is defined as-

auj

for frg;when all other loops are closed. Due to k
— T9j

nonlinear nature of T-S fuzzy model the relativinga Knrsj "o (50)
is calculated at the following operating point. _ _ R
Xoij = I_qu (t - T; )----UoJ' (t -1 - p)in (t _1) ______ Yo (t - q)J The relative normalized gain is defined as-

. djj Knrsi

Where p and g are sampling parameters gne T Drgj = : (51)
NTSj
, where d;; denotes the time delay in the logp-u; :

and T is the sampling interval andy;; is the input Where-

Knrgj is normalized gain for the looyg;

vector.
The steady state gain matrix fér5 becomes- Knrgj IS the normalized gain for the same loop when
krsi1 Krsip - Krsin all other I(_)Ops are cl_osed. _ .
K K ok T.he relative normalized gain array [RNGA] is then
Krs = [kTSij ]nxn = |(Ts2r fszz TSN | (45)  given as-
. c P15 = Kyrs O Kprs (52)
kran Krsz -+ Kram The RNGA-based control configuration rules are then
krgj is the steady state gain fdkg; based onxy; proposed as-

1. All paired RGA elements are positive

2. Nlis negative

3. The paired RNGA elements are positive

4. The paired RNGA elements are closet to 1
5. Large RNGA elements should be avoided

The relative gain forfrg; is then defined

Ko
Arsi =L (46)

TSj
Where- 7. CONCLUSION

krgj is steady state gain for the lodpg; Thus it has been seen that complicated chemical

krg; is steady state gain for the same loop when all Pprocesses are multivariable in nature where theze a

multiple inputs and multiple outputs. Designing
control system for these processes is a complicated
task as there are multiple control loops. The
N+s = Kis O K (47) interactions among these control loops needs to be

analyzed so as to have a satisfactory control syste
The pairing rules are similar to the classical RGAThe purpose of doing this analysis is to decide the

input output pairing which is will minimize the
interaction among various loops. This paper was
The Niederlinski index (NI) for the T-S fuzzy model devoted to review methods that have being used to
accomplish this important task. The methods include

other loops are closed.
The RGA for the T-S fuzzy model is then given as-

rules.

's defined as- various arrays proposed to decide the input output
B det[KTS] pairing which are based on the classical relatiaim g

Nys =——— (48) array. Many indices were also proposed to carry out

Krgi the task of input output pairing. Some of the intpot
i= indices were briefly discussed. Many methods were
N > 0 is the additional pairing rule developed to find out input output pairing in a

decentralized control structure which is most faebr

The normalized integrated error is calculated as- for multivariable systems. Some of these methods

- were also reviewed. Recently for complicated
o = z Yi (°°)‘ Yi (r.T)_l_ (49) processes techniques like fuzzy logic have beed use
i to model the processes. Many methods based on fuzzy
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logic are alos proposed in literature. Some these
methods are also reviewed.
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